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Examples	of	subsidence
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1. Louisiana	wetlands:	fault	activation	
(USGS)

2.	Venice:	mixed	effect	of	
groundwater	and	gas	
extraction

3.	Groningen:	
seismic	effects	
(NAM)

1992 2012



Subsidence,	cause and effect
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q Subsidence to first order 
related to pressure drop in 
reservoir (e.g. Geertsma, 
1963)

q Relation with induced and 
natural seismicity poorly 
understood, for example in 
Groningen, San Jacinto, 
Basel. 

Bourne	et	al	(2014)	

K. van Thienen-Visser et al.: Compaction and subsidence of the Groningen gas field 371

Figure 4. Compaction in the Groningen reservoir at January 2012 calculated with the RTiCM model (from TNO, 2014). The difference
between calculated and modeled subsidence is indicated at the benchmark locations (label: Subsidence diff). A red color indicates that the
measured subsidence is larger than the modeled subsidence.

Due to the creep part of the RTiCM model, this model will
lead to larger subsidence values at the end of field life (ex-
pected in 2080).

3.4 Discussion

The compaction models (RTiCM and Time Decay) both fit
the delay character of the observed subsidence in the first
10 years after the start of the gas production (Fig. 3). They
underpredict the maximum subsidence in the center of the
subsidence bowl by 2–3 cm for the RTiCM model and 5–
6 cm for the Time Decay model at the end of 2011. Spatially
both compaction models show the same pattern of overesti-

mation and underestimation (Fig. 4). An overestimation of
the subsidence occurs in the eastern part and in the north-
western part of the field. An underestimation exists in the
southwestern part of the field. The differences between the
compaction models are in the amplitude of maximum com-
paction (RTiCM larger than Time Decay) and the shape of
the subsidence bowl at the edges of the field. The RTiCM
model predicts a slightly steeper subsidence bowl than the
Time Decay model.
As is clear from Fig. 4, relatively large misfits (up to 8 cm)

occur over the field. In the van Opstal (1974) method a depth
of a rigid basement is assumed, which governs the shape of

proc-iahs.net/372/367/2015/ Proc. IAHS, 372, 367–373, 2015

Difference	between	calculated	and	modeled	subsidence	
indicated	at	benchmark	 locations.	
Van	Thienen-Visser et	al	(2015)



Subsurface and surface monitoring

q Geodetic: satellites (InSAR, GPS) 
as well as in situ techniques 
(levelling)

q Production data from wells (bottom 
hole pressure, rates) 

q Time-lapse seismic

6

The 4D seismic response of a compacting reservoir – Examples from the Valhall Field, Norway. 

Detailed analysis of a 3D/4C OBC survey acquired in 1997, 
reveals also the azimuthal anisotropy, [6]. When later 
matched to results from the shear wave recordings from the 
permanent array, the similar shape that follow the shape of 
the subsidence bowl at surface is reflected. In 2003, the  
anisotropic areas have moved further away from the field 
center, consistently with the expansion of the subsidence 
bowl as most of the production was drained from the flank 
of the field in the period between these surveys [7] .  

Figure 5, Shallow azimuthal anisotropy calculated from 
shear wave recording,; vector indicates orientations, length 
indicates the magnitude. Left 1997, middle 2003, right 
bathymetry map. 

Conventional 4D analysis  

Standard analysis of production induced 4Dseismic 
observations are based on separating the time-lapse signal 
into a time-shift – and an amplitude part. After 
compensating for the time shift between base and monitor 
surveys, the resulting section may be inverted for changes 
in acoustic impedance. The main signals are present at the 
reservoir level, but the magnitude of it can not be explained 
by compaction in the reservoir itself. It appears that the 
reductions in velocities in the cap-crock also are significant. 
The magnitude of these changes can be in the order of 100 
m/sec (Figure 6).  

Figure 6. Time-shifts and amplitude changes due to a 
producing well. 

Quantitative analysis linking the acoustic impedance 
changes and time-shift signals to first order pressure 
changes in the reservoir is routinely done at Valhall, based 
on deterministic relations.   

For expanding these analysis into the overburden and to 
validate the potential impact of second order effects (stress 
arching) at the reservoir, refined insights to the mechanism 
and the improved rock physics relations are needed. 

There is a strong correlation of deformation patterns 
between net changes in volumetric strain, and the 
accumulated time-shift seen by 4D seismic, as shown in 
Figure 7,. The model and the data represent changes over 
10 years of production, and reflect the overall changes in 
the deformation due to rigidity of the overburden. 

Figure 7. Changes in volumetric strain from 1992-2002 
compared to time shifts calculated from seismic data for the 
same period. 

The frequent seismic surveys acquired across the 
permanent seismic array (LoFS), provide the opportunity to 
follow this mechanism closer. As seen in Figure 8, the left 
captions show the time-shift response after 4 month of 
production and the right one after 6 months. The 
deformation observed by simple time-shifts analysis 
appears to be still constrained within a few hundred meters 
above the reservoir, but is increasing in strength. There are 
possible indications that the velocity changes are influenced 
by layer heterogeneities, as the velocity changes are 
propagating upwards. The other relevant observation is the 
indication of a velocity increase at reservoir level, 
indicating possible stress-aching effects. 

Figure 8, Time-shifts reflecting the propagation of 
subsidence in the overburden after 4 (left) and 6 months of 
production  
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Artist	impression	Valhall field,	including	wells	
http://offshoreenergytoday.com

Valhall:	Changes	in	volumetric	strain	1992-2002	 (left)	and	
time	shift	from	seismic	data	(right)	Barkved et	al	(2005)

InSAR (©	ESA)

Geodetic	surface	dataTime-lapse	seismic



Data	assimilation	for	subsidence	monitoring
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Ps-InSAR

Geodetic	surface	
monitoring	network

Groundwater	
monitoring	wells

Flowrates,	bottom-hole	
pressure

Seismic

Groundwater	model

Geomechanical model

Reservoir	model

Data	assimilation Well	logs

q Integrated	approach,	focusing	on	 three	aspects:

– Data:	sparse	subsurface,	high	 resolution	surface	data

– Model:	 coupled	reservoir/geomechanics

– Data	assimilation	method:	non-linear	physics
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Coupled flow-geomechanics

9

Hooke’s	 law,	estimating	strain	and	relating	porosity	to	pressure,	 strain,	
plastic	strain,	(possibly	 including	 thermal	deformation)	

FLOW
Conversation	of	mass	and	Darcy’s	law,	estimating	pressure,	
saturation,	flow,	 (possibly	 including	energy	and	
thermodynamic	 phase	equilibrium)	

MECHANICS

𝑝 𝜙, (𝑘), 𝑝



Modelling subsidence:	reservoir	compaction

q Subsidence is typically modelled 
with a compaction model of a disk-
shaped reservoir, using 
Geertsma’s analytical solution 
(1963), in combination with a time-
dependent pressure distribution 
from a multi-layer reservoir model.

10

23-4-2016

11

21

22

Groningen fault model

• 1700 faults interpreted

• 1100 faults in Petrel model

• 700 faults used for gridding

• Hand-picked inclined faults

• 100 x 100 m grid

Groningen	reservoir	model
Mmaxworkshop	March	2016,	 http://feitenencijfers.namplatform.nl

Bau (2014),	after	Geertsma (1963)

q Reservoir models can have various 
levels of complexity. Including 
known and less well known 
geological features.



Geomechanical modelling of	compaction (3)
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1.4. GEOMECHANICS 9

Figure 1.3: Schematic of uniaxially constrained soil consolidation (after Craig, 1997,
p. 86). A compressive load −W is applied suddenly at time t = 0 to a uniaxially
confined sample of cross-sectional area A. The excess fluid pressure jumps to its
undrained value W/A to support the load. Stress is transferred partially to the solid
skeleton of the porous material (represented by the spring) until excess fluid pressure
is again zero for long times and the load is carried entirely by the solid framework.

cross-sectional area A. An axial load −W is applied suddenly at t = 0 and
then held constant. (Tensile stresses are taken to be positive.) The water pres-
sure throughout the sample jumps up by the amount p = W/A at t = 0+.
A profile of excess pressure develops within the sample as water flows out
the top drain, which is maintained at atmospheric pressure. Terzaghi derived
the consolidation equation for this experiment to be the diffusion equation
for excess (greater than hydrostatic) water pressure p,

∂p

∂t
= c

∂2p

∂z2
(1.1)

where c is a diffusivity that is known as the consolidation coefficient, t is
time, and z is distance along the soil column.
As will be demonstrated in Section 6.3, Eqn. 1.1 is independent of stress,

because the theory of poroelasticity leads to the special result that the pore
pressure field and applied stress field are uncoupled for the boundary con-
ditions in Terzaghi’s experiment. The time evolution of the pressure profile
is exactly the same as the analogous thermal conduction problem of a sud-
den step change (Carslaw and Jaeger, 1959, pp. 96–97), which was noted by
Terzaghi.

Terzaghi is generally recognized for elucidating the important concept of
effective stress, which for soils is well approximated to be the difference
between the applied stress and pore pressure, because the grains are incom-

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu
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metric strain, and α is the Biot coefficient which relates
the ratio of compressibility of the skeleton to the com-
pressibility of the solid grain (Charlez 1991). Due to the
change of porosity accompanied by the skeletal deforma-
tion caused by fluid withdrawal, the meaning of pore
compressibility now needs to be considered carefully.

In an uncoupled analysis, two major assumptions are
usually involved in order to calculate the volumetric
strain tr(εε) in Eq. (20):

– The reservoir deforms uniaxially only in the vertical
direction and the horizontal strains are equal to zero
(Fig. 5a), or

– The reservoir deforms isotropically (Fig. 5b).

Of course, in addition, one has to assume that no changes
occur in the total stresses.

The uniaxial strain compaction condition (also termed
the oedometric compaction) is only valid for under-
ground formations whose lateral dimensions are large
compared to their thickness (Geertsma 1957). By apply-
ing the boundary condition dεx=dεy=0 or tr εε=dεz, where
z is the vertical axis, and assuming no change in the total
vertical stress, i.e. dσz=0, the pore compressibility due to
the uniaxial compaction assumption can be obtained as
(see Appendix, section on Analysis of Uncoupled Pore
Compressibility)

(21)

where K and G are the shear and bulk modulus respec-
tively. As for the isotropic deformation, where the hori-
zontal and vertical deformation are equal (i.e.
dεx=dεy=dεz), assuming again no change in the total ver-
tical stress, one obtains

(22)

Equations (21) and (22) are two values of the pore com-
pressibility which are usually used in an uncoupled anal-
ysis. Even for these two cases the differences in the pore
compressibilities are significant. For instance, using a
Poisson’s ratio of v=0.2 in Eqs. (21) and (22), the calcu-
lated pore compressibility for isotropic compaction is
twice the value for the uniaxial strain compaction for the
same Young’s modulus and porosity.

The inadequacy of the pore-compressibility parameter
to represent the pore-volume change of porous media un-
der stress changes stems from the fact that cp is a single-
valued parameter relating only pore-pressure change to
porosity change. However, the volumetric response of
deformable porous media is not a direct function of the
pore-pressure change, but of the effective stress changes.
In turn, the effective stress changes depend on the
boundary conditions and the total stress changes, in addi-
tion to the pore-pressure changes following the effective-
stress principle.

The need to consider the full response of deformable
porous media to different loading conditions is due to the
fact that it is not always possible to idealise, nor to predict
a priori the loading condition to which a formation will be
subjected to due to fluid withdrawal. In the case of uniaxi-
al compaction, it is only valid when the formation is hori-
zontally infinite. Real reservoirs are, however, bounded
laterally and will not deform uniformly, even under a uni-
form pressure drawdown. This case is shown in Fig. 6,
from the result of a disk-shaped, axisymmetric and thin
reservoir subjected to uniform pore-pressure reduction.
Due to the stiffness and bending of the overburden, the

Fig. 5 a Oedometric compaction, and b isotropic compaction

Fig. 6 Displacement-vector field due to a uniform pressure
drawndown in a disk-shaped reservoir
Coupled	 simulation	of	compacting	disk	
Lewis	&	Pao,	2003

q Reservoir compaction as uniaxial  
consolidation process: axial load 
is initially borne by fluid, and then 
shifted to skeletal frame 
(Terzaghi)

q Compaction is not only affected 
by pore pressure, but also by 
boundary conditions, and total 
stress change: uniaxial 
assumption not always valid and 
often full coupling of flow and 
geomechanics required

Terzaghi’s uniaxially constrained	soil	 consolidation,	
Craig	1997



Parameter	uncertainty

q Fluid flow:
– Permeability
– Porosity
– Saturation
– Pressure

q Geomechanics:
– Young’s modulus
– Poisson’s ratio

q Geometry and geology
– Overburden and reservoir layering
– Faults and structure

12
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State	and parameter	estimation

14

Bayes’ rule:

𝑓(𝜓	|	𝐝)	 =
𝑓(𝐝|	𝜓)𝑓(𝜓)

𝑓(𝐝)
Assume state evolution can be described by Markov process:

𝑑	𝜓	 = 	𝑔 𝜓 𝑑𝑡	 + 	𝑑𝛽,
Minimum variance estimate:

𝜓2 = 3𝜓	𝑓 𝜓 𝐝	 𝑑𝜓

To find this solution, several methods are being used for subsurface flow 
problems:
1. Randomized Maximum Likelihood (Oliver et al, 1996)
2. Ensemble Smoother (Van Leeuwen and Evensen, 1996)
3. Ensemble Kalman Filter (Evensen, 1994)
4. Ensemble Kalman Smoother (Evensen and Van Leeuwen, 2000)
5. Ensemble Square Root Filter (e.g., Zhang et al, 2010)
6. ES-MDA (Emerick and Reynolds, 2012)
7. Particle Filters (review: Van Leeuwen, 2009) 
8. Markov-Chain Monte Carlo (e.g., Oliver et al, 1996)



Particle methods
q Approximate model uncertainty with 

ensemble of model realisations

q Weight each particle with difference 
observation-model

q Can be used as a smoother or as a filter

15



Particle filter	– avoid ensemble	collapse

q Resample to avoid ensemble 
degeneracy: sequential importance 
resampling

q Optimize the ensemble going 
forward by proposal density or 
kernel dressing (regularised particle 
filter)

16

global atmospheric chemistry model with online fluid
dynamics the global OH concentration, its trend, and the
initial methylchloroform (MCF) concentration were es-
timated from MCF concentration observations in the
period 1975–95. After 200 model integrations the statistics
of mean and covariance converged to their final value. It
should be mentioned that only three parameters were
estimated, but the measurement operator (i.e., obtaining
the model equivalent of the observations by running the
full model) was rather complex. This is usually the case in
parameter estimation. Vossepoel and van Leeuwen (2007)
estimated the lateral mixing coefficients for temperature,
salinity, and momentum in the global ocean general cir-
culation model Océan Parallélisé (OPA) of 28 resolution
with meridional refinement to 0.58 in the tropics. Ob-
servations were obtained from a model run with mixing
coefficients derived from altimeter sea surface height
variability observations. About 10 000 coefficients were
estimated using 128 members. The method worked, but
showed that more particles were needed for convergence.
[Actually, to obtain good estimates the observations had
to be assimilated locally (i.e., only observations within a
58 radius were taken into account for each grid point, re-
ducing the number of observations per grid point to about
21). This is a form of localization, to be discussed later.]

3. Reducing the variance in the weights

Several methods exists to reduce the variance in the
weights (see, e.g., Doucet et al. 2001). We discuss here
sequential importance resampling, the marginal particle
filter and hierarchical models, because these are among
the few that can be applied directly to large-dimensional
problems. The first two methods ‘‘break with the past’’
in that they get rid of the weights of the particles accu-
mulated during previous assimilation steps. In resam-
pling methods the posterior ensemble is resampled so
that the weights become equal. In the marginal particle
filter the past is integrated out. Both methods do not
change the position of the particles in state space. In the
next section methods are discussed that do change the
positions of the prior particles in state space to improve
the likelihood of the particles. In hierarchical models one
tries to break up the full assimilation problem in a se-
quence of easier to solve smaller assimilation problems,
using the concept of conditional probability densities.

a. Resampling

The idea of resampling is simply that particles with
very low weights are abandoned, while multiple copies
of particles with high weight are kept for the posterior
pdf. Although the idea is old (Metropolis and Ulam
1944), it was reintroduced in the statistical literature by

Gordon et al. (1993). To restore the total number of
particles N, identical copies of high-weight particles are
formed. The higher the weight of a particle is, the more
copies are generated, such that the total number of
particles becomes N again. Sequential importance re-
sampling (SIR) does the above and makes sure that the
weights of all posterior particles are equal again, to 1/N.
Several resampling algorithms exist of which we discuss
four. The last one is a special application of Metropolis–
Hastings, which uses a chainlike procedure to resample
the particles.

SIR is identical to basic importance sampling but for
a resampling step after the calculation of the weights.
The ‘‘flowchart’’ reads (see Fig. 2) as

1) Sample N particles ci from the initial model proba-
bility density p(c0).

2) Integrate all particles forward in time up to the mea-
surement time [so, sample from p(cnjcn!1

i ) for each i].
3) Calculate the weights according to (13) and attach

these weights to each corresponding particle. Note
that the particles are not modified, only their relative
weight is changed!

4) Resample the particles such that the weights are
equal to 1/N.

5) Repeat steps 2, 3, and 4 sequentially until all obser-
vations up to the present have been processed.

FIG. 2. The particle filter with resampling, also called SIR. The
model variable runs along the vertical axis, the weight of each
particle corresponds to the size of the bullets on this axis. The
horizontal axis denotes time, with observations at a time interval
of 10 time units. All particles have equal weight at time zero. At
time 10 the particles are weighted according to the likelihood and
resampled to obtain an equal-weight ensemble.

4094 M O N T H L Y W E A T H E R R E V I E W VOLUME 137
Graphs	fromVan Leeuwen (2009)	
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12 3. Methodology

Figure 3.1: Coordinate system and geometric relations of the point pressure source, used to derive surface deformation (figure taken
from (Dzurisin, (2007))

3.2. Statistical part
3.2.1. Data assimilation
Data assimilation is a process where observational data is fused with scientific information. The following
components are needed to perform data assimilation, namely data and an a priori statistical model for the
state process. Data assimilation is viewed from a Bayesian perspective. (Wikle and Berliner, (2007)

Numerical sampling, also known as Monte Carlo techniques.(?) Gaussian distribution
Cauchy distribution
Class of datasets that are sequential data, an example are timeseries of deformation measurements. There
are stationary and nonstationary sequential distributions, where the stationary data evolves in time, but the
distribution remains the same from which it is generated. (?)
Sampling algorithms

3.2.2. Particle filter
A sequential Monte Carlo algorithm is a particle filter.(?)

advanced reservoir simulation (lecture femke):
A particle filter is a Monte Carlo based method and is used in non-lineair models.

•Generate samples in parallel sequential over time and weight them according how good they are. Im-
portance sampling, this can be made very efficient.
•The weight is the normalised value of the pdf of the observations given model state.
•With each new set of observations the old weights are multiplied with the new weights, this will lead to one
particle with all the weight. A solution for this is resampling, were high-weight particles are duplicated and
low-weight particles abandoned.
•

3.3. Data
•InSAR LOS data (2009-2015) will be used and visualized to get familiar with the data and subsidence rates.
•GPS and levelling data.
•Reservoir data as gas production, wells etc. will be used.

Mogi	source,	 after	Dzurisin,	 2007

3.4. Particle filter 13

3.4. Particle filter
A particle filter example is downloaded from internet (Dave) and customsized to the Groningen situation.
The observations of the filter is the deformation of the surface in [mm]. The filter is used to approach these
observations with the Mogi model. An amount of normally distributed random Mogi scale factor numbers
are generated. These scale factors are the input of the Mogi model and the output is compared with the
observations with the following equations:

Pw = 1
p

2ºæ
·e°

(obs °dmod)2

2æ
(3.2)

where Pw is the particle weight, æ the variance, obs is the observed deformation and dmod is the modelled
deformation.

The following test situations are done to understand the filter and how it works. The first situatian is 1
Mogi source and 1 grid cell, as shown in the figure below. Then a 2D sitation, 2 Mogi sources in 2 grid cells, a
3D situation with 4 Mogi sources in 4 grid cells and and a 3D situation with 2 Mogi sources in 4 grid cells.

=Mogi source

Four situations: 1 Mogi source, 2 Mogi sources, 4 Mogi sources, 2 Mogi sources

3.4.1. Particle filter results
The results of the particle filter weights and the modelled deformation [mm] are presented in the figure below.

RMSE =
s

1
n

nX

i=1
(obsi °dmodi )2 (3.3)

nog niet verandert

Table 3.1: 1 Mogi source, N=500 - 100000 realizations with computed RMSE [mm]

N=500 N=1000 N=10000 N=100000

æ=0.01 Best modelled, RMSE [mm] 1.72e-02 7.63e-03 6.99e-04 3.96e-05

99% confidence interval, RMSE [mm] 4.21e-02 3.70e-02 3.79e-02 3.79e-02

Amount of 99% confidence 8 18 140 1390

æ=0.1 Best modelled, RMSE [mm] 1.72e-02 7.63e-03 6.99e-04 3.96e-05

99% confidence interval, RMSE [mm] 3.67e-01 3.94e-01 3.71e-01 3.79e-01

Amount of 99% confidence 64 148 1418 14371

æ=1 best modelled, RMSE [mm] 1.72e-02 7.63e-03 6.99e-04 3.96e-05

99% confidence interval, RMSE [mm] 3.14e+00 3.05e+00 3.07e+00 3.05e+00

Amount of 99% confidence 472 915 9236 92886

Testing	with	one,	two	and	four	Mogi	
sources

Particle Filter	for Groningen	Subsidence (1)

q Modeling subsidence 
with so-called Mogi 
sources, spherical 
sources of strain.

q Tested particle filter 
methodology on 
cases with increasing 
number of Mogi 
sources

q Importance 
resampling (SIR) to 
prevent ensemble 
degeneracy

18

global atmospheric chemistry model with online fluid
dynamics the global OH concentration, its trend, and the
initial methylchloroform (MCF) concentration were es-
timated from MCF concentration observations in the
period 1975–95. After 200 model integrations the statistics
of mean and covariance converged to their final value. It
should be mentioned that only three parameters were
estimated, but the measurement operator (i.e., obtaining
the model equivalent of the observations by running the
full model) was rather complex. This is usually the case in
parameter estimation. Vossepoel and van Leeuwen (2007)
estimated the lateral mixing coefficients for temperature,
salinity, and momentum in the global ocean general cir-
culation model Océan Parallélisé (OPA) of 28 resolution
with meridional refinement to 0.58 in the tropics. Ob-
servations were obtained from a model run with mixing
coefficients derived from altimeter sea surface height
variability observations. About 10 000 coefficients were
estimated using 128 members. The method worked, but
showed that more particles were needed for convergence.
[Actually, to obtain good estimates the observations had
to be assimilated locally (i.e., only observations within a
58 radius were taken into account for each grid point, re-
ducing the number of observations per grid point to about
21). This is a form of localization, to be discussed later.]

3. Reducing the variance in the weights

Several methods exists to reduce the variance in the
weights (see, e.g., Doucet et al. 2001). We discuss here
sequential importance resampling, the marginal particle
filter and hierarchical models, because these are among
the few that can be applied directly to large-dimensional
problems. The first two methods ‘‘break with the past’’
in that they get rid of the weights of the particles accu-
mulated during previous assimilation steps. In resam-
pling methods the posterior ensemble is resampled so
that the weights become equal. In the marginal particle
filter the past is integrated out. Both methods do not
change the position of the particles in state space. In the
next section methods are discussed that do change the
positions of the prior particles in state space to improve
the likelihood of the particles. In hierarchical models one
tries to break up the full assimilation problem in a se-
quence of easier to solve smaller assimilation problems,
using the concept of conditional probability densities.

a. Resampling

The idea of resampling is simply that particles with
very low weights are abandoned, while multiple copies
of particles with high weight are kept for the posterior
pdf. Although the idea is old (Metropolis and Ulam
1944), it was reintroduced in the statistical literature by

Gordon et al. (1993). To restore the total number of
particles N, identical copies of high-weight particles are
formed. The higher the weight of a particle is, the more
copies are generated, such that the total number of
particles becomes N again. Sequential importance re-
sampling (SIR) does the above and makes sure that the
weights of all posterior particles are equal again, to 1/N.
Several resampling algorithms exist of which we discuss
four. The last one is a special application of Metropolis–
Hastings, which uses a chainlike procedure to resample
the particles.

SIR is identical to basic importance sampling but for
a resampling step after the calculation of the weights.
The ‘‘flowchart’’ reads (see Fig. 2) as

1) Sample N particles ci from the initial model proba-
bility density p(c0).

2) Integrate all particles forward in time up to the mea-
surement time [so, sample from p(cnjcn!1

i ) for each i].
3) Calculate the weights according to (13) and attach

these weights to each corresponding particle. Note
that the particles are not modified, only their relative
weight is changed!

4) Resample the particles such that the weights are
equal to 1/N.

5) Repeat steps 2, 3, and 4 sequentially until all obser-
vations up to the present have been processed.

FIG. 2. The particle filter with resampling, also called SIR. The
model variable runs along the vertical axis, the weight of each
particle corresponds to the size of the bullets on this axis. The
horizontal axis denotes time, with observations at a time interval
of 10 time units. All particles have equal weight at time zero. At
time 10 the particles are weighted according to the likelihood and
resampled to obtain an equal-weight ensemble.
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Particle	weights

with	Karlijn	Beers,	Ramon	Hanssen



Particle filter	for Groningen	Subsidence (2)

q Testing on subset of data with 19 
Mogi sources and real InSAR data

q Ensemble size N=1000
q Signal ~ 8 mm, error ~ 4 mm
q RMSE assimilation result ~ 6 mm
q Representativeness Mogi source 

for subsidence?

with	Karlijn	Beers,	Ramon	Hanssen

residuals	(mm) analysis	(mm)

InSAR data	of	2009-2010	
subsidence	 (mm)



Coupled	Reservoir-Geomechanical model
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q Coupled reservoir-geomechanical model: AD-GPRS (Denis Voskov, TUD, 
Yifan Zhou, Timur Garipov, Stanford)

q Simplified geometry with full coupling, fully implicit methods makes model 
computationally efficient



Coupled flow-geomechanical –Experimental setup

q For testing: simplified, 
Terzaghi-like problem, 1D, 
100 ensemble members

q Sensitivity studies to rock 
properties

q Relationship Poisson ratio-
strain non-linear
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Agenda

• Introduction	to	subsidence
• Modeling	subsidence:	flow	and	
geomechanics

• Assimilation	to	reconstruct	subsurface	
processes

• Ongoing	work	and	preliminary	results
• Conclusions	and	Outlook
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Conclusions	and	ongoing	work
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q Preliminary conclusions
– Particle methods can be used to estimate geomechanical and flow 

parameters in non-linear simulations

– Assimilation of real data require knowledge of model 
uncertainty/representativeness

q Outlook
– Sampling strategies: hybrid methods?
– Dynamic versus static forcing
– Deep versus shallow causes of subsidence
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Q&A



Outlook

q Uplift due to steam injection

q Other geological settings, offshore subsidence
q Surface effects of mining, geothermal energy
q Susidence related to water extraction (Ravenna, Italy, or Thailand)
q Sea level rise and coastal subsidence (Indus and Nile delta, Wadden

Sea)

q Groundwater studies and shallow subsurface

25

Bangkok,	
Thailand

Wadden Sea,	
Netherlands



Inspiration

q Groningen gas field as case study to address 
the following effects on subsidence through 
data-consistent parameterisation:

Ø Compartimentalisation
Ø Groundwater fluctuations and aquifer depletion
Ø Creep in caprock and overburden
Ø Induced seismicity
Ø Heterogeneities
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From	DINO,	2008,	De	Mulder,	2003,	
see	also	Ketelaar 2009

Bourne	 et	al	(2014)	

Bourne	 et	al	(2014)	


