

On estimating geomechanical parameters from surface deformation with a particle method Data assimilation for subsidence monitoring

Femke C. Vossepoel, Karlijn Beers, Ramon F. Hanssen, Denis Voskov

Ensemble Kalman Filter Workshop, June 2017 1

- Introduction to subsidence
- Modeling subsidence: flow and geomechanics
- Assimilation to reconstruct subsurface processes
- Ongoing work and preliminary results
- Conclusions and Outlook

- Introduction to subsidence
- Modeling subsidence: flow and geomechanics
- Assimilation to reconstruct subsurface processes
- Ongoing work and preliminary results
- Conclusions and Outlook

Examples of subsidence

1. Louisiana wetlands: fault activation (USGS)

3. Groningen: seismic effects

2. Venice: mixed effect of groundwater and gas extraction

Subsidence, cause and effect

- Subsidence to first order related to pressure drop in reservoir (e.g. Geertsma, 1963)
- Relation with induced and natural seismicity poorly understood, for example in Groningen, San Jacinto,

Basel.

Difference between calculated and modeled subsidence indicated at benchmark locations. *Van Thienen-Visser et al (2015)*

Subsurface and surface monitoring

- Geodetic: satellites (InSAR, GPS) as well as in situ techniques (levelling)
- Production data from wells (bottom hole pressure, rates)
- □ Time-lapse seismic

Valhall: Changes in volumetric strain 1992-2002 (left) and time shift from seismic data (right) *Barkved et al (2005)*

Production rates and pressure

Artist impression Valhall field, including wells http://offshoreenergytoday.com

Geodetic surface data

InSAR (© ESA)

Data assimilation for subsidence monitoring

□ Integrated approach, focusing on three aspects:

- Data: sparse subsurface, high resolution surface data
- Model: coupled reservoir/geomechanics
- Data assimilation method: non-linear physics

- Introduction to subsidence
- Modeling subsidence: flow and geomechanics
- Assimilation to reconstruct subsurface processes
- Ongoing work and preliminary results
- Conclusions and Outlook

Coupled flow-geomechanics

FLOW

Conversation of mass and Darcy's law, estimating pressure, saturation, flow, (possibly including energy and thermodynamic phase equilibrium)

MECHANICS

Hooke's law, estimating strain and relating porosity to pressure, strain, plastic strain, (possibly including thermal deformation)

Modelling subsidence: reservoir compaction

 Subsidence is typically modelled with a compaction model of a diskshaped reservoir, using Geertsma's analytical solution (1963), in combination with a timedependent pressure distribution from a multi-layer reservoir model.

Bau (2014), after Geertsma (1963)

Groningen reservoir model Mmax workshop March 2016, http://feitenencijfers.namplatform.nl

- Reservoir models can have various Groningen fault model levels of complexity. Including
 - . knownpand less

 - Hand-picked inclined faults
 - 100 x 100 m grid

Geomechanical modelling of compaction (3)

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

- Reservoir compaction as uniaxial consolidation process: axial load is initially borne by fluid, and then shifted to skeletal frame (Terzaghi)
- Compaction is not only affected by pore pressure, but also by boundary conditions, and total stress change: uniaxial assumption not always valid and often full coupling of flow and geomechanics required

Terzaghi's uniaxially constrained soil consolidation, Craig 1997

Coupled simulation of compacting disk *Lewis & Pao, 2003*

Parameter uncertainty

- □ Fluid flow:
 - Permeability
 - Porosity
 - Saturation
 - Pressure
- Geomechanics:
 - Young's modulus
 - Poisson's ratio
- Geometry and geology
 - Overburden and reservoir layering
 - Faults and structure

- Introduction to subsidence
- Modeling subsidence: flow and geomechanics
- Assimilation to reconstruct subsurface processes
- Ongoing work and preliminary results
- Conclusions and Outlook

State and parameter estimation

Bayes' rule:

$$f(\psi \mid \mathbf{d}) = \frac{f(\mathbf{d} \mid \psi) f(\psi)}{f(\mathbf{d})}$$

Assume state evolution can be described by Markov process:

$$d\psi = g(\psi)dt + d\beta,$$

Minimum variance estimate:

$$\widehat{\psi} = \int \psi f(\psi | \mathbf{d}) d\psi$$

To find this solution, several methods are being used for subsurface flow problems:

- 1. Randomized Maximum Likelihood (Oliver et al, 1996)
- 2. Ensemble Smoother (Van Leeuwen and Evensen, 1996)
- 3. Ensemble Kalman Filter (Evensen, 1994)
- 4. Ensemble Kalman Smoother (Evensen and Van Leeuwen, 2000)
- 5. Ensemble Square Root Filter (e.g., Zhang et al, 2010)
- 6. ES-MDA (Emerick and Reynolds, 2012)
- 7. Particle Filters (review: Van Leeuwen, 2009)
- 8. Markov-Chain Monte Carlo (e.g., Oliver et al, 1996)

Particle methods

- Approximate model uncertainty with ensemble of model realisations
- Weight each particle with difference observation-model
- Can be used as a smoother or as a filter

Bayes' theory:

$$p_m(\psi | \mathbf{d}) = \frac{p_d(\mathbf{d} | \psi)p_m(\psi)}{p_d(\mathbf{d})}$$

$$p_d(\mathbf{d}) = \int p_d(\mathbf{d} | \psi) p_m(\psi) d\psi$$

Represent model probability density by ensemble:

$$p_m(\psi) = \frac{1}{N} \sum_{i=1}^N \delta(\psi - \psi_i)$$

Minimum variance estimator:

$$\hat{\psi} = \int \psi p_m(\psi \mid \mathbf{d}) d\psi = \frac{\int \psi p_d(\mathbf{d} \mid \psi) p_m(\psi) d\psi}{\int p_d(\mathbf{d} \mid \psi) p_m(\psi) d\psi} = \frac{\sum_{i=1}^N \psi_i p_d(\mathbf{d} \mid \psi_i)}{\sum_{i=1}^N p_d(\mathbf{d} \mid \psi_i)}$$

Particle filter – avoid ensemble collapse

Graphs fromVan Leeuwen (2009)

 Resample to avoid ensemble degeneracy: sequential importance resampling

weighting resampling weighting t=0 t=20 t=10 t=10 Kalman update dressing weighting resampling

t=10 t=10

t=0

t=10

 Optimize the ensemble going forward by proposal density or kernel dressing (regularised particle filter)

- Introduction to subsidence
- Modeling subsidence: flow and geomechanics
- Assimilation to reconstruct subsurface processes
- Ongoing work and preliminary results
- Conclusions and Outlook

Particle Filter for Groningen Subsidence (1)

- Modeling subsidence with so-called Mogi sources, spherical sources of strain.
- Tested particle filter
 methodology on
 cases with increasing
 number of Mogi
 sources

Mogi source, after Dzurisin, 2007

Particle weights

Testing with one, two and four Mogi sources

Particle filter for Groningen Subsidence (2)

- Testing on subset of data with 19
 Mogi sources and real InSAR data
- □ Ensemble size N=1000
- □ Signal ~ 8 mm, error ~ 4 mm
- RMSE assimilation result ~ 6 mm
- Representativeness Mogi source for subsidence?

with Karlijn Beers, Ramon Hanssen

InSAR data of 2009-2010 subsidence (mm)

Coupled Reservoir-Geomechanical model

- Coupled reservoir-geomechanical model: AD-GPRS (Denis Voskov, TUD, Yifan Zhou, Timur Garipov, Stanford)
- Simplified geometry with full coupling, fully implicit methods makes model computationally efficient

Coupled flow-geomechanical –Experimental setup

- For testing: simplified,
 Terzaghi-like problem, 1D,
 100 ensemble members
- Sensitivity studies to rock properties
- Relationship Poisson ratiostrain non-linear

- Introduction to subsidence
- Modeling subsidence: flow and geomechanics
- Assimilation to reconstruct subsurface processes
- Ongoing work and preliminary results
- Conclusions and Outlook

Conclusions and ongoing work

Preliminary conclusions

- Particle methods can be used to estimate geomechanical and flow parameters in non-linear simulations
- Assimilation of real data require knowledge of model uncertainty/representativeness
- Outlook
 - Sampling strategies: hybrid methods?
 - Dynamic versus static forcing
 - Deep versus shallow causes of subsidence

Outlook

- Uplift due to steam injection
- Other geological settings, offshore subsidence
- □ Surface effects of mining, geothermal energy
- Susidence related to water extraction (Ravenna, Italy, or Thailand)
- Sea level rise and coastal subsidence (Indus and Nile delta, Wadden Sea)
- Groundwater studies and shallow subsurface

Wadden Sea, Netherlands

Bangkok, Thailand

Inspiration

- Groningen gas field as case study to address the following effects on subsidence through data-consistent parameterisation:
- Compartimentalisation
- Groundwater fluctuations and aquifer depletion
- Creep in caprock and overburden
- Induced seismicity
- > Heterogeneities

From DINO, 2008, De Mulder, 2003, see also Ketelaar 2009